Ride-sourcing compared to its public-transit alternative using big trip data

Image credit: Yuan Liao

Abstract

Ride-sourcing risks increasing GHG emissions by replacing public transit (PT) for some trips therefore, understanding the relation of ride-sourcing to PT in urban mobility is crucial. This study explores the competition between ride-sourcing and PT through the lens of big data analysis. This research uses 4.3 million ride-sourcing trip records collected from Chengdu, China over a month, dividing these into two categories, transit-competing (48.2%) and non-transit-competing (51.8%). Here, a ride-sourcing trip is labelled transit-competing if and only if it occurs during the day and there is a PT alternative such that the walking distance associated with it is less than 800m for access and egress alike. We construct a glass-box model to characterise the two ride-sourcing trip categories based on trip attributes and the built environment from the enriched trip data. This study provides a good overview of not only the main factors affecting the relationship between ride-sourcing and PT, but also the interactions between those factors. The built environment, as characterised by points of interest (POIs) and transit-stop density, is the most important aspect followed by travel time, number of transfers, weather, and a series of interactions between them. Competition is more likely to arise if: (1) the travel time by ride-sourcing <15min or the travel time by PT is disproportionately longer than ride-sourcing; (2) the PT alternative requires multiple transfers, especially for the trips happening within the transition area between the central city and the outskirts; (3) the weather is good; (4) land use is high-density and high-diversity; (5) transit access is good, especially for the areas featuring a large number of business and much real estate. Based on the main findings, we discuss a few recommendations for transport planning and policymaking.

Publication
In Journal of Transport Geography
Yuan Liao
Yuan Liao
Postdoctoral Research Fellow in Mobility

My research interests include mobility data science, urban big data, GIS, sustainable transport.

Related